Objective 1 – Functional Relationships

FUNCTIONS

Tahla

function: relation such that each x-value (input) has just one y-value (output); for the set of ordered pairs (x, y) belonging to a function, no x-coordinate is repeated **Example:** {(2, 2), (3, 2)} is a function, but {(2, 2), (2, 3)} is not.

Example: A function in which the y-values are one more than their corresponding x-values can be represented in several ways.

1 1	
2	
-2 0 1 2 3	
-2	
	2 1 0 1 2 3 -2 1 -1

Granh

$$y = x + 1$$

Equation Function Notation
$$y = x + 1$$
 $f(x) = x + 1$

List	IVI	ap
(-2,-1), (-1, 0), (1, 2)}	-2	→ -1\
(-1, 0),	(-1 +	→ 0
(1, 2)	1	2

vertical line test: a vertical line drawn on a function's graph only crosses at one point; if a vertical line crosses at more than one point, it is not a function

Example: Not a function Some x-values have more than one y-value.

INDEPENDENT AND DEPENDENT QUANTITIES

independent quantity: amount that can be changed or manipulated dependent quantity: amount that changes because of another quantity **Example:** A room has four chairs, c, around each table, t, and 1 chair for the teacher. c = 4t + 1 The dependent quantity of c changes based on t.

EQUATIONS AND INEQUALITIES

equality: describes two equal terms; uses = sign muslity describes two terms that are n

Description	Symbol	Line
Less than	<	dashed
Greater than	>	dashed
Less than or equal to	≤	solid
Greater than or equal to	≥	solid

graph for >, and shade below line or graph for <

Example: $y < -x^2 + 1$

Point (0, 0) is a possible solution, but (0, 1) is not.