Objective 3 – Linear Functions

SLOPE AND INTERCEPT

slope, m: rate of change; as the absolute value of m increases, the line gets steeper

parallel lines: two lines that never touch; same distance apart; slopes are the same

perpendicular lines: two lines that cross to form a right angle; slopes are opposite reciprocals

v-intercept, b: point at which the line crosses the y-axis; to find the **Example:** Find the slope, m, of a line that passes through (-2, 5) and (1, -1).

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{1 - -2} = \frac{-6}{3} = -2$$

Example: A line's slope is 3. A parallel line's slope is also 3.

A perpendicular line's slope is $-\frac{1}{2}$.

y-intercept look at its graph or substitute x = 0 into the equation and solve for y; changing the y-intercept changes the initial condition of a problem x-intercept; point at which the line crosses the x-axis; to find the x-intercept look at its graph or substitute y = 0 into the equation and solve for x

FORMS OF LINEAR EQUATIONS

linear function: function whose graph is a nonvertical line

Form	Linear Equation	
Slope-Intercept	y = mx + b	m is the slope and b is the y -intercept
Point-Slope	$y_2 - y_1 = m(x_2 - x_1)$	m is the slope
Standard	Ax + By = C	A, B , and C are integers; A is positive

DIRECT VARIATION AND PROPORTIONAL CHANGE

direct variation: linear equation y = kx where k = proportionality constant (slope)

Example: It takes Juan 30 minutes to read 60 pages. If pages read, p, is directly proportional to time, t, how many pages does Juan read in 120 minutes? Answer: 240 pages

1. Find
$$k$$
 2. Given $k = 2$, find p at $t = 120$
 $p = kt$ $p = 2t$
 $60 = k(30)$ $p = 2(120)$

k = 2p = 240